Cloning and characterization of a novel MyoD enhancer-binding factor

نویسندگان

  • Masakazu Yamamoto
  • Christopher D. Watt
  • Ryan J. Schmidt
  • Unsal Kuscuoglu
  • Roger L. Miesfeld
  • David J. Goldhamer
چکیده

Glucocorticoid-induced gene-1 (Gig1) was identified in a yeast one-hybrid screen for factors that interact with the MyoD core enhancer. The Gig1 gene encodes a novel C2H2 zinc finger protein that shares a high degree of sequence similarity with two known DNA binding proteins in humans, Glut4 enhancer factor and papillomavirus binding factor (PBF). The mouse ortholog of PBF was also isolated in the screen. The DNA binding domain of Gig1, which contains TCF-E-tail CR1 and CR2 motifs shown to mediate promoter specificity of TCF-E-tail isoforms, was mapped to a C-terminal domain that is highly conserved in Glut4 enhancer factor and PBF. In mouse embryos, in situ hybridization revealed a restricted pattern of expression of Gig1 that overlaps with MyoD expression. A nuclear-localized lacZ knockin null allele of Gig1 was produced to study Gig1 expression with greater resolution and to assess Gig1 functions. X-gal staining of Gig1(nlacZ) heterozygous embryos revealed Gig1 expression in myotomal myocytes, skeletal muscle precursors in the limb, and in nascent muscle fibers of the body wall, head and neck, and limbs through E14.5 (latest stage examined). Gig1 was also expressed in a subset of Scleraxis-positive tendon precursors/rudiments of the limbs, but not in the earliest tendon precursors of the somite (syndetome) defined by Scleraxis expression. Additional regions of Gig1 expression included the apical ectodermal ridge, neural tube roof plate and floor plate, apparent motor neurons in the ventral neural tube, otic vesicles, notochord, and several other tissues representing all three germ layers. Gig1 expression was particularly well represented in epithelial tissues and in a number of cells/tissues of neural crest origin. Expression of both the endogenous MyoD gene and a reporter gene driven by MyoD regulatory elements was similar in wild-type and homozygous null Gig1(nlacZ) embryos, and mutant mice were viable and fertile, indicating that the functions of Gig1 are redundant with other factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis.

MyoD is a critical myogenic factor induced rapidly upon activation of quiescent satellite cells, and required for their differentiation during muscle regeneration. One of the two enhancers of MyoD, the distal regulatory region, is essential for MyoD expression in postnatal muscle. This enhancer contains a functional divergent serum response factor (SRF)-binding CArG element required for MyoD ex...

متن کامل

Six1 Regulates MyoD Expression in Adult Muscle Progenitor Cells

Quiescent satellite cells are myogenic progenitors that enable regeneration of skeletal muscle. One of the early events of satellite cell activation following myotrauma is the induction of the myogenic regulatory factor MyoD, which eventually induces terminal differentiation and muscle function gene expression. The purpose of this study was to elucidate the mechanism by which MyoD is induced du...

متن کامل

Differential regulation of the muscle-specific GLUT4 enhancer in regenerating and adult skeletal muscle.

We have reported a novel functional co-operation among MyoD, myocyte enhancer factor-2 (MEF2), and the thyroid hormone receptor in a muscle-specific enhancer of the rat GLUT4 gene in muscle cells. Here, we demonstrate that the muscle-specific enhancer of the GLUT4 gene operates in skeletal muscle and is muscle fiber-dependent and innervation-independent. Under normal conditions, both in soleus ...

متن کامل

Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells.

Two families of transcription factors, myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2), function synergistically to regulate myogenesis. In addition to activating structural muscle-specific genes, MRFs and MEF2 activate each other's expression. The MRF, myogenin, can activate MEF2 DNA binding activity when transfected into fibroblasts and, in turn, the myogenin promoter ...

متن کامل

MyoD distal regulatory region contains an SRF binding CArG element required for MyoD expression in skeletal myoblasts and during muscle regeneration.

We show here that the distal regulatory region (DRR) of the mouse and human MyoD gene contains a conserved SRF binding CArG-like element. In electrophoretic mobility shift assays with myoblast nuclear extracts, this CArG sequence, although slightly divergent, bound two complexes containing, respectively, the transcription factor YY1 and SRF associated with the acetyltransferase CBP and members ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2007